
1

University Football Database

John Knight

The University of Texas Rio Grande Valley

CYBI-6315 Applied Database Systems

Prof. Jorge Castillo

1 May, 2024

2

Contents

Introduction

 Purpose

 Background

 Motivation

 Goal

Methodology

 Design Approach

 ER Diagram

 Relational Schema

Results & Discussion

 Evaluation using test queries

 Technical challenges

 Limitations

 Potential solutions

Conclusion

 Summary of results

 Main takeaways

Appendix

 References

3

Introduction

Purpose

The purpose of this database project is to identify a target enterprise, understand the key challenges it

faces, and design a database solution tailored to address these issues. This approach will enhance the

enterprise's operational efficiency and support its long-term success by providing a scalable and flexible

data management system.

Background

In the past 20 years, data-driven decisions have become a crucial part of sports. Perhaps most famously,

in baseball, the book and subsequent film Moneyball1 highlighted some of the common misconceptions

about game strategy. For instance, teams were overvaluing a player’s batting average compared to his

on-base percentage, even though the value of a base hit and a walk are very similar.

In basketball, data analytics showed that the expected points from a shot attempt could be maximized

by shooting either three-point attempts, or very easy two-point attempts close to the basket. The

resulting change in teams’ shot locations can be seen in Figure 1.2

Figure 1. Most common NBA shot locations, 2001-02 compared to 2019-20.

In football, analysts used data and probability to scrutinize decisions made by coaches on fourth down,

and generally found them to be too conservative, often opting to punt instead of trying to convert a first

down. And even in soccer, one of the hardest sports to apply data due to its lack of discrete states, data

has driven some changes to strategy such as a reduction in aerial crosses from the wing.

It is clear that in any modern sports operation, it is essential to have access to well-organized data to

help drive decisions relating to recruitment, game strategy, player development, injury recovery, and

many other facets of the business.

4

Motivation

In 2022, the University of Texas Rio Grande Valley announced that it was launching a football program

that would begin play in the 2025 season. Coaches and support staff were hired, and in February 2024

the program had added 51 athletes to its football roster, more than a year ahead of its first scheduled

game.3

This sparked my curiosity about the logistical challenges involved in building a football program from the

ground up. It became apparent that a sophisticated database system would be essential for managing

such a complex operation. This project presented a perfect opportunity to look into designing a database

that can support the dynamic and multi-faceted needs of a collegiate football program.

Goal

The goal of this project is to create a database system for a university football program. The database

should contain tables necessary to aid with player recruitment, scouting, tracking statistics, monitoring

injuries, and other football-related data.

Methodology

Design approach

MySQL was chosen as the database management system for this project. MySQL is one of the most

popular relational database systems in the world, and therefore has a vast community of tools and

support resources. MySQL is free and open source, scalable, and integrates well with many programming

languages and frameworks.

The three fundamental entities that form the building blocks of a football database are as follows:

 People (players, staff, etc.)

 Teams (could be professional, college, high school, etc.)

 Games (two teams playing against one other)

There are also various entities that describe attributes of the three entities above. For example, a player

might sustain an injury; a team has a home stadium; a game is usually played as part of a wider

competition.

Entity-Relationship Diagram

To achieve sufficient normalization, 10 entities were created: player, team, game, staff_member, note,

injury, stadium, city, competition, and stat_line. Most of these entities are self-explanatory. A stat_line is

a set of statistics pertaining to one player in one game. A note is a note about a player added by any

member of staff (for example, it could be some observations written by a scout who has watched the

player). An injury contains details of a player injury and includes a description of the injury as well as an

estimated return date, which can be updated if the player’s recovery is behind or ahead of schedule.

The city entity was originally an attribute within stadium. However, since city includes a compound value

such as “Dallas, TX” it was given its own entity, else the database would not be considered normalized. In

5

an expanded database, more information could be added to city such as the country, the population, and

the city’s longitudinal and latitudinal coordinates.

Figure 2. Entity-relationship diagram for university football database.

Relational Schema

In the relational schema, a solid underline denotes the primary key. A dashed underline represents a

foreign key. Note that in the stat_line table, both game_ID and player_ID together form the primary key,

since there can only be one row that represents a single player in a single game. Game_ID and player_ID

are both also foreign keys, from the game and player tables respectively.

player (player_ID, first_name, last_name, date_of_birth, height, weight, team_ID)

staff_member (staff_ID, first_name, last_name, date_of_birth, role, salary, team_ID)

team (team_ID, city_name, nickname, color_primary, color_secondary, home_stadium)

game (game_ID, date, team_1, team_2, team_1_score, team_2_score, stadium)

stadium (stadium_ID, name, city, capacity)

competition (competition_ID, name, type)

city (city_ID, name, state)

note (note_ID, added_by, player_ID, date, content)

injury (injury_ID, type, date, description, estimated_return_date, player_ID)

stat_line (game_ID, player_ID, total_snaps, pass_attempts, pass_completions,

pass_yards, rush_attempts, rush_yards, receptions, rec_yards, touchdowns, fumbles,

interceptions, tackles)

6

Access Roles

It is important that each user of the database has a level of access that reflects their role within the

organization. Some data may be sensitive, and access should be restricted only to appropriate parties.

Similarly, some database users may have limited technical proficiency and their ability to update or

delete data should be restricted to prevent causing irreparable harm to the data.

In the original design, seven roles were created:

 Database Administrator

 Director (the person in charge of the football program)

 Analyst

 HR (Human Resources personnel)

 Coach

 Scout

 Player

Upon review, it was decided that these seven roles were perhaps overly specific, and could be

consolidated into five. The role of Director was absorbed into Analyst, and the role of Scout was

combined with Coach.

The SQL code generating the five access roles can be seen in Figures 3 and 4. The DatabaseAdministrator

role is granted all privileges. The Analyst is allowed to select and insert, as well as being able to update

data as it would be time-consuming to contact the administrator every time a small error needed to be

corrected.

The HR role is purely for personnel in charge of employees, and only concerns the staff_member and

player tables. People with Coach access are given the ability to select and insert data, but not to update

existing data. Finally, the Player role is restricted to looking up information related to games, stats, or

injuries (note that players are not allowed to look at notes made by staff members about themselves or

other players).

Figure 3. Access roles for DatabaseAdministrator, Analyst, and HR.

7

Figure 4. Access roles for Coach and Player.

In order to populate the database with some initial dummy data for testing, the large language model

(LLM) ChatGPT was asked to generate appropriate names and attributes to fill the various tables. An

example can be seen in Figure 5, where ChatGPT has generated the names of 20 fictitious competitions

and their competition type.

Figure 5. Synthetic competition data created with help of LLM.

8

Results & Discussion

Evaluation using test queries

Three test queries were written to replicate some common database usage and ensure the results were

as expected.

The first query looks up the rushing stats for all players who had at least one rushing attempt in a

particular game. This query was chosen to replicate the type of query a coach or analyst might make

when analyzing player performance. Three tables are joined in this query (stat_line, player, and team).

Figure 6. Query to select players who had at least one rush attempt in game_id 1.

The results correctly return the six players who had at least one rushing attempt in game_id 1. For the

team name, the CONCAT command is used to concatenate the primary_name and nickname attributes

into a single attribute called team_name. The results have been sorted by rush_yards in descending

order.

Figure 7. Results of query 1.

The second query looks up the notes for a particular player, then adds a new note, and finally shows the

new results. This query was chosen to demonstrate how the note table works. Four tables are joined in

this query (note, player, team, and staff_member).

9

Figure 8. Query to view all notes for player_ID = 13.

Figure 9. Results of the previous query showing one note that fits the criteria.

Figure 10. Query adding a new note for player 13.

Figure 11. The results of the original query now return two rows, including the new note.

After the initial query (Figure 8) there is only a single note in the results, which reads “Demonstrates

good team spirit and cooperation with teammates.” When the subsequent note is added using the

INSERT INTO command, and the initial query is run again, there are now two results (Figure 11), with the

second note reading “Player was arrested for DUI.”

The final test query first shows all the stadiums in Florida, then gives the count and average capacity for

those stadiums. This query was chosen to demonstrate a slightly more advanced aggregation query.

Firstly, a simple SELECT statement was run so that all Florida stadiums could be viewed. Two tables are

joined in this query (stadium and city).

Figure 12. Query to show all stadiums in Florida.

10

Figure 13. Results of the query showing there are four stadiums in Florida in the database.

Next, the COUNT and AVG commands were used to get the count and mean capacity of stadiums fitting

the criteria (state = ‘FL’). These are given the aliases florida_stadiums and average_capacity. We can see

that the results tally with what would be expected from the initial results in Figure 13.

Figure 14. This query asks for the count and mean of stadiums in Florida.

Figure 15. The SQL output correctly shows 4 stadiums with an average capacity of 70,224.75.

Technical challenges

One challenge encountered was the order in which tables were created in MySQL. Most tables contain

foreign keys, and if a table is created where a foreign key is defined for a table that does not yet exist, an

error is returned. Therefore, it is necessary to create the tables in such an order that prevents this from

happening.

11

Figure 16. SQL code to create the database and the first two tables.

Additionally, I originally considered creating the database using SQLITE embedded in Python. However,

while coding the database I discovered that SQLITE does not support access roles, and so I decided to

switch from SQLITE to MySQL.

Limitations

As described in the Methodology section, a LLM was utilized to create toy examples for testing purposes.

This is fine for small amounts of synthetic data, but for real world data (players, teams, games, etc.) a

different approach would be required. While there may be existing data available from various sources

such as sports websites, it would be extremely time-consuming to manually enter all the required data.

Additionally, as new data is created – for example every time a game is played – it would be useful for

the organization to have the ability to incorporate the new data into its analysis as soon as possible.

Potential solutions

To address the limitations associated with manual data entry and the need for real-time data integration,

automating the data acquisition process through web scraping and establishing a robust data pipeline

could be highly effective. By utilizing web scraping techniques, data can be extracted systematically from

online sources such as sports websites and APIs that provide real-time statistics on players, teams, and

game results. This data can then be cleaned and transformed to fit the schema of the MySQL database.

Additionally, setting up a data pipeline using tools like Apache Kafka or AWS Data Pipeline would enable

the continuous flow of data into the database. This setup not only minimizes human error but also

ensures that the database is always up-to-date, allowing for immediate analysis post-game.

Implementing such solutions would significantly enhance the database’s capability to handle large

volumes of dynamic sports data efficiently.

12

Conclusion

This project successfully provides a framework for a potentially more complex football database. MySQL

provided the ideal choice of database management system, not only for the relatively small database

used in this project, but as a framework for a much larger database as the project is scaled to that of a

real world football operation.

The three test queries all ran successfully, showcasing some common operations: viewing player stats,

viewing and adding player notes, and calculating summary statistics. Of course, for a larger scale

database, many more queries of a more complex nature would be required.

One takeaway from this project was the importance of thorough planning before the deployment of a

database. It was demonstrated that detailed architectural designs and pre-defined data management

strategies are crucial for the successful implementation and scalability of the database. Furthermore, it

was learned that anticipatory measures in schema design and infrastructure can significantly mitigate

potential issues post-deployment.

Appendix

References

1. Lewis, M. (2003). Moneyball: The art of winning an unfair game. W.W. Norton & Company.

2. Goldsberry, K. (2020, January 14). The game has changed. Twitter.
https://twitter.com/kirkgoldsberry/status/1217109175894831105

3. UTRGV Athletics. (2024, February 7). Football adds 41 vaqueros for 2024.
https://goutrgv.com/news/2024/2/7/football-adds-41-vaqueros-for-2024.aspx

