
1

Using Statistical Learning Techniques to Predict Winners

of NFL Games from Half Time Metrics

John Knight

The University of Texas Rio Grande Valley

MATH-6333 Statistical Learning

Prof. Hansapani Rodrigo

5 May, 2024

2

Introduction

The NFL (National Football League) is the predominant professional league for the sport of

American football (known in the U.S.A. as simply football). Much time and discussion is devoted

to analyzing and predicting the winners of NFL games, and it is of particular interest to predict

which team will win a given game having watched the first half. Other than the score of the

game, and the prior assessment of the difference in quality between the two teams (taken from

the Vegas line), how much value can be found by including statistics taken from the first half of

the game? Is the first half of action largely just statistical noise, or does it contain a signal of how

the two teams are performing on this particular day?

In this project, various statistical learning methods were used to predict the winner of each

game in the period 2012 to 2023 using features based on statistics from the first half of the

games, as well as the pre-game Vegas odds (for both the handicap line and the total points).

There were two main objectives: firstly, to compare different modeling techniques and see

which performed best at this task. And secondly, to see which features were the strongest

predictors.

All the statistical learning techniques in this project were performed using Python. Python is the

most popular language for data science, and boasts a large number of freely available packages

and libraries for data science and many other tasks. Python was also used in the initial collection

and cleaning of the NFL data. Game data was scraped from the website Pro Football Reference

using the beautifulsoup and sqlite3 libraries, and half time statistics were aggregated from

play-by-play data.

Literature Review

May et al. (2010) examined statistics from NFL games to compare the importance of rushing and

passing statistics, and concluded that passing efficiency is a better indicator of team strength

than rushing efficiency. 1 Warner (2010) used a Gaussian process to predict the margin of

victory in NFL games but found that their resulting predictions were not as accurate as the

Vegas line, and were not sufficiently accurate to place profitable bets. 2

Blaikie et al. (2011) created artificial neural network models to predict the outcomes of football

games, claiming that their NFL model performed well compared to various expert predictions,

while their college football version did not perform so well. 3 Ozuma & Nwachukwu (2015) used

linear regression and K-nearest neighbors to create a hybrid model predicting the results of NFL

games using various features, claiming a significantly high level of accuracy from their

predictions. 4

Finally, Pelechrinis (2018) presents a simple yet robust and well-calibrated model using logistic

regression to predict the winning probability for the home team during NFL matches. 5

3

Pelechrinis also finds that more complex, nonlinear models fail to improve on the performance

of a simple linear model.

Methods

The initial dataset, nfl_ht_data.csv contained 3,260 observations (each representing an NFL

game) and 40 variables. Some of these variables, such as nominal variables, were not relevant

to the task and were removed. Categorical values with two levels were converted to a binary 1

or 0 value, and similarly, a home_win variable was created with a value of 1 or 0 based on

whether home_final_score was greater than away_final_score. Tied games are fairly

uncommon in the NFL, and for the purposes of this project the 12 games that ended as a tie

were removed.

The only missing values in the data were some blank values in the columns relating to first

downs. Upon investigation, it was found that these had occurred where a team had no first

downs before half time. Therefore, these blank values were imputed with a value of zero. After

this pre-processing, the dataset had 3,248 observations and 28 variables. These variables were

comprised of the response variable, home_win, plus the 27 features described in Table 1.

Table 1. List and description of the 27 features in final dataset.

Variable Description

vegas_total The Las Vegas betting line for total points in the game.

ht_home_lead The number of points the home team is leading by (negative
if the home team is trailing).

home_vegas_line The Las Vegas handicap line with respect to the home team
(for example if the home team is a 5.5 point favorite, this
would be -5.5).

away_offensive_plays Number of offensive plays run by the away team.

home_offensive_plays Number of offensive plays run by the home team.

away_yards_per_play Mean yards gained by away team on offensive plays.

away_yards_per_pass_play Mean yards gained by away team on passing plays.

away_yards_per_rush_play Mean yards gained by away team on rushing plays.

home_yards_per_play Mean yards gained by home team on offensive plays.

home_yards_per_pass_play Mean yards gained by home team on passing plays.

home_yards_per_rush_play Mean yards gained by home team on rushing plays.

away_first_downs Number of first downs gained by away team.

home_first_downs Number of first downs gained by away team.

away_first_downs_per_play Number of first downs gained by away team divided by
number of offensive plays.

home_first_downs_per_play Number of first downs gained by home team divided by
number of offensive plays.

4

away_first_downs_1_2 Number of first downs gained by away team on first or
second down.

home_first_downs_1_2 Number of first downs gained by home team on first or
second down.

away_turnovers Number of turnovers by away team.

home_turnovers Number of turnovers by home team.

away_sacked Number of times away team quarterback sacked.

home_sacked Number of times home team quarterback sacked.

away_penalties Number of penalties committed by away team.

home_penalties Number of penalties committed by home team.

home_second_half_choice Does the home team have the choice to receive the kickoff in
the second half?

is_playoff Is this a playoff game?

neutral_venue Is this a neutral venue (i.e. not the 'home' team's usual home
stadium)?

net_home_plays_leading Number of plays where home team is leading minus number
of plays where away team is leading.

The data were then randomly split into an 80% training set and a 20% testing set. Although this

data could be arranged chronologically, a random split was chosen rather than using the most

recent seasons for testing. The main reason for this is because the 2020 season was affected by

the COVID-19 outbreak, and it was undesirable to have all these matches go into either the

training set or test set.

Some descriptive analysis was then performed on the data. A correlation matrix was created to

identify any strong positive or negative correlations between variables, which might be

considered redundant and removed. Next, histograms and box plots were created to inspect the

distribution of each variable. Those with an apparent Gaussian distribution were transformed

using the StandardScaler function, while those with a more skewed distribution underwent a

log transformation, first adding 1 to ensure zero values could be handled without raising an

error.

The seven statistical learning methods applied to the dataset were: logistic regression (using

both backward stepwise selection and the Lasso method), linear discriminant analysis, random

forest, boosting, neural network, and principal component regression. Here is a brief

explanation of each method:

Logistic Regression (backward stepwise selection)

This model was built using the LogisticRegression function from Python’s scikit-learn

library. The SFS function was used along with 5-fold cross validation to determine the optimal

number of features. The final model was then fit on the full training set using the selected

5

features. Additionally, interaction terms were added between the features showing strongest

statistical significance, to see if this would further improve the model.

Logistic Regression (Lasso)

The lasso method uses a penalty parameter C to penalize the size of the regression coefficients.

As a result, many of the coefficients can shrink to zero (unlike in ridge regression, where they

can become small but cannot reach zero). This can help to combat overfitting, and aid the

model in generalizing outside of the training set. In order to estimate the optimal value of C,

cross validation was used to try 10 different values of C, and the value returning the lowest log

loss was chosen.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) works by finding the linear combinations of features that best

separate two or more classes or events. LDA assumes that different classes generate data based

on Gaussian distributions with shared covariance matrices among the classes, and seeks to

maximize the ratio of between-class variance to within-class variance in any particular dataset,

thereby ensuring maximum class separability. The LinearDiscriminantAnalysis function

from the scikit-learn library was utilized to perform LDA. The coefficients obtained from the

model provide insights into the relative predictive importance of each feature.

Random Forest

In random forests, many decision trees are created using synthetic datasets created from the

original training data using bootstrap aggregation (‘bagging’). The crucial element of random

forests is the parameter m which denotes the number of features randomly chosen to be

considered for each split. This avoids the same features being used on every tree and de-

correlates the trees, helping to prevent overfitting.

The RandomForestClassifier function was used for this task. To find the optimal value for m,

5-fold cross validation was used to try all values from 2 upward. The final model was then

trained using this value of m, and the feature_importances_ attribute was used to see which

features had contributed most, based on each feature’s contribution to the decrease in overall

node impurity, as measured by the Gini index.

Boosting

Boosting is another tree-based method. However, unlike random forests, with boosting the

trees are grown sequentially, with each tree fit using the residuals from the current model.

Compared to random forests, boosting models are slightly more vulnerable to overfitting, and

so three parameters were tuned using cross-validation: the number of trees, the learning rate,

and the number of splits in each tree. Again, feature_importances_ was used to output the

most important features.

Neural Network

6

The neural network was fit using the PyTorch library. While neural networks can be powerful in

their ability to uncover complex nonlinear relationships in the data, one of the challenges in

creating them is the number and range of hyperparameters that need to be tuned. For this

model, five parameters were tuned using 5-fold cross validation: the learning rate, the number

of epochs, the size of the hidden layer, the batch size, and the dropout rate for regularization –

important to help avoid overfitting. Unlike most of the other techniques, with neural networks

there is no simple way to output feature importance, and in this sense it can be described as a

‘black box’ with strong predictive power that is not easily explained.

Principal Component Regression

With the possibility that many of the features in this dataset are redundant or irrelevant, a

variable reduction method might improve the performance of the logistic regression. The PCA

function from scikit-learn was used to apply principal component analysis to reduce the full set

of features to a smaller number. 5-fold cross validation was used to try each number of

variables, and the optimal value was then used to train a final logistic regression model using

the resulting principal components.

After each model had been tuned and trained using the training data, it was used to make

predictions on the untouched testing set. The scoring method chosen to compare models was

the log likelihood. While it is common to use other measures such as accuracy or AUC (Area

Under the Receiver Operating Curve), these measures rely on a 1 or 0 prediction for each game

using some probability threshold (e.g. 0.5). However, in the context of football predictions, it is

of limited interest to predict which team is more likely to win – often this is trivially obvious.

Instead, it might be important (for example, for betting purposes) to predict whether a favored

team has, say, a 75% or an 85% chance of winning the game.

Log likelihood is a measure of how well a statistical model explains the observed data, by

comparing the probability of each prediction with the actual results. Higher log likelihood values

(or, lower negative log likelihood values) indicate a model that better captures the underlying

pattern of the data. It is calculated using the following formula:

Results

The correlation matrix (Figure 1) showed very strong correlations between some variables. For

example, away_yards_per_play correlated strongly with away_yards_per_pass_play, and

away_first_downs correlated strongly with both away_first_downs_per_play and

away_first_downs_1_2. Since this seemed like a redundancy of the same underlying

7

information, it was decided to remove four features: away_yards_per_play,

home_yards_per_play, away_first_downs, and home_first_downs.

Figure 1. Correlation matrix for all features in the dataset.

Features were transformed and scaled based on their distribution, as described in the Methods

section. An example of an approximately Gaussian distribution is ht_home_lead (Figure 2) while

away_turnovers (Figure 3) is more skewed.

8

Figure 2. Histogram showing the distribution of the ht_home_lead variable.

Figure 3. Histogram showing the distribution of the away_turnovers variable.

The logistic regression with backward stepwise selection method found that 5 variables were

optimal for the model. These variables and their coefficients are shown in Table 2. Because the

features were scaled, it is possible to compare the size of effects by the absolute value of each

coefficient.

Table 2. Variables used in logistic regression with backward stepwise selection.

Variable Coefficient

ht_home_lead 1.661

home_vegas_line -0.754

net_home_plays_leading -0.615

is_playoff 0.303

vegas_total -0.130

9

The largest coefficient is for ht_home_lead, with a larger lead for the home team at half time

implying an increase in the log odds of the team winning the game. There are negative

coefficients for home_vegas_line, net_home_plays_leading, and vegas_total, meaning an

increase in these variables would imply a decrease in the log odds of the team winning the

game. Finally, the binary variable is_playoff increases the log odds by 0.303 when

is_playoff = 1 (i.e. when it is a playoff game). Interactions were all found to be insignificant

and did not improve the model.

For the lasso regression, using cross validation the optimal value for the cost parameter C was

found to be 0.046. Note that in the Python function, C is the inverse of λ in the general lasso

formula, and so the cost parameter was actually
1

0.046
 or 21.7.

After training the lasso regression, 13 of the feature coefficients shrank to zero. The coefficients

of the remaining 10 variables can be seen in Table 3. Similarly to the backward stepwise

selection method, ht_home_lead and home_vegas_line were the two most important

predictors.

Figure 4. Plot of the log loss score of each value of C tried during cross validation for the Lasso regression.

Table 3. Variables with a nonzero coefficient in the Lasso logistic regression.

Variable Coefficient

ht_home_lead 1.499

home_vegas_line -0.678

10

is_playoff 0.172

home_second_half_choice 0.128

vegas_total -0.081

home_yards_per_pass_play 0.034

home_yards_per_rush_play 0.030

home_penalties 0.030

home_first_downs_per_play 0.022

away_first_downs_per_play -0.004

Applying the two final logistic regression models to the testing set, the log likelihood for the

backward stepwise model was -305.36, and for the lasso it was -304.74, so the lasso performed

slightly better on the holdout data.

The coefficients for the LDA, sorted by by their absolute value in descending order, can be seen

in Table 4. Again, ht_home_lead and home_vegas_line are the two most important features.

The log likelihood on the testing set was -305.09.

Table 4. Coefficients for the Linear Discriminant Analysis model.

Variable Importance

ht_home_lead 1.425

home_vegas_line -0.739

net_home_plays_leading -0.514

is_playoff 0.341

home_first_downs_1_2 -0.151

home_first_downs_per_play 0.145

away_first_downs_per_play -0.131

vegas_total -0.129

home_turnovers -0.125

away_turnovers 0.122

home_yards_per_pass_play 0.118

away_penalties 0.112

away_sacked -0.103

home_sacked -0.103

home_second_half_choice 0.093

home_yards_per_rush_play 0.086

away_yards_per_pass_play 0.056

home_penalties -0.039

away_yards_per_rush_play 0.032

away_offensive_plays -0.028

home_offensive_plays 0.025

neutral_venue -0.019

away_first_downs_1_2 -0.005

11

For the random forest model, the optimal value for m found by cross validation was 9. However,

as can be seen in Figure 5, the mean log loss was very similar for m = 6, and so it was decided in

the context of this plot to use m = 6, since m = 9 is a bit more of an outlier relative to its close

neighbors. 6 is also closer to the 'rule of thumb' for random forests which is to use m = √𝑝

which in this case would be √23 = 4.8.

Figure 5. Plot of the log loss score of each value of m tried during cross validation for the random forest.

After training the final model with m = 6, it was used to make predictions on the test data and

the log likelihood was -320.10. The variable importances can be seen in Table 5. Again,

ht_home_lead and home_vegas_line are the two most important features.

Table 5. Variable importance for the random forest model, measured by decrease in overall node impurity.

Variable Importance

ht_home_lead 0.213

home_vegas_line 0.109

away_turnovers 0.106

home_first_downs_per_play 0.056

away_first_downs_per_play 0.054

home_yards_per_pass_play 0.052

12

away_yards_per_pass_play 0.047

away_yards_per_rush_play 0.045

home_yards_per_rush_play 0.045

vegas_total 0.038

away_offensive_plays 0.033

home_offensive_plays 0.033

away_first_downs_1_2 0.030

home_first_downs_1_2 0.029

home_penalties 0.024

home_second_half_choice 0.024

away_penalties 0.015

home_sacked 0.015

away_sacked 0.012

home_turnovers 0.010

is_playoff 0.007

neutral_venue 0.004

net_home_plays_leading 0.001

For the boosting model, cross validation found the optimal parameters to be a learning rate of

0.1, max_depth 1, and n_estimators 100. The feature importances for the boosting model can

be seen in Table 6. Once again, ht_home_lead and home_vegas_line are the two most

important features, but it is notable how much less important the other variables are, relative

to the random forest model. The log likelihood of the boosting model when applied to the test

data was -310.47.

Table 6. Variable importance for the boosting model.

Variable Importance

ht_home_lead 0.791

home_vegas_line 0.188

home_yards_per_pass_play 0.008

home_yards_per_rush_play 0.003

vegas_total 0.003

away_first_downs_per_play 0.003

is_playoff 0.002

away_yards_per_rush_play 0.001

away_first_downs_1_2 0.001

away_yards_per_pass_play 0.001

home_first_downs_per_play 0.001

away_turnovers 0.001

away_offensive_plays 0.000

home_offensive_plays 0.000

home_first_downs_1_2 0.000

home_turnovers 0.000

13

away_sacked 0.000

home_sacked 0.000

away_penalties 0.000

home_penalties 0.000

home_second_half_choice 0.000

neutral_venue 0.000

net_home_plays_leading 0.000

The optimal hyperparameters found for the neural network are shown in Table 7. When applied

to the test set, the log likelihood for the neural network model was -308.54.

Table 7. Optimal hyperparameters for the neural network model, found by cross validation.

Parameter Optimal Value

learning rate 0.001

epochs 10

batch size 32

hidden layer size 150

dropout rate 0.1

For the principal component regression, cross validation found the optimal number of

components to be 21 (see Figure 6). The log likelihood on the test set was -307.06.

Figure 6. Plot of the log loss score of each number of principal components by cross validation.

14

A comparison of the log likelihood for each model on the test set can be seen in Table 8. The

Lasso regression performed best with a log likelihood of -304.74, followed by the other linear

methods. Random forest was the poorest performer, with a log likelihood of -320.10.

Table 8. Comparison of the performance of the 7 different models.

Model Log Likelihood

Logistic Regression (Lasso) -304.74

Linear Discriminant Analysis -305.09

Logistic Regression (Stepwise) -305.36

Principal Component Regression -307.06

Neural Network -308.54

Boosting -310.47

Random Forest -320.10

Discussion

It is interesting to see that the best performing models for this task were the more simple linear

models such as logistic regression and LDA, whereas the techniques that allow for more

complex interactions between variables performed less well. Why might this be the case? When

there are a large number of variables with limited predictive power, or variables that are related

to one another, overfitting can be a common problem. To overcome this limitation in a future

repeat of this project, it may be possible to use feature engineering to create a smaller number

of features that capture the same underlying information from the 23 features used in this

project.

The most important variables were found by all models to be ht_home_lead and

home_vegas_line. It comes as little surprise to learn that the two most important factors are

the score and the relative quality of the two teams. In the best-performing models (logistic

regression and LDA), the next most important features were net_home_plays_leading and

is_playoff. The models found that net_home_plays_leading is negatively related to the log

odds of home_win, while is_playoff is positively related.

It should be pointed out that these relationships exist in the context of all other variables being

held equal. So, when the score and the quality of the teams is held equal, the more time a team

has been leading, the less chance they have of winning. Some possible reasons for this are that

it is mentally tiring to play with the lead for long periods, or that the opposing team may have

momentum if they trailed for a long stretch and have recently taken the lead. The is_playoff

result implies an extra second half advantage for home teams in the playoff, over and above the

home advantage inbuilt in the pre-match Vegas line. This could possibly be due to the especially

raucous home atmosphere in playoff games, and may be worthy of further investigation.

15

Overall, this project reminds us that despite the number of sophisticated nonlinear models

available today, sometimes a simple linear approach still gives the best results when

generalizing outside of the training data.

References

1. May, C., Dan, M., Carl, M., Ralph, A., & John, H. (2010). Rush versus pass: modeling the
NFL. Journal of Quantitative Analysis in Sports.

2. Warner, J. (2010). Predicting margin of victory in NFL games: machine learning vs. the Las
Vegas line. Published on: Dec, 17.

3. Blaikie, A. D., Abud, G. J., David, J. A., & Pasteur, R. D. (2011). NFL & NCAA football
prediction using artificial neural networks. In Proceedings of the Midstates Conference for
Undergraduate Research in Computer Science and Mathematics, Denison University,
Granville, OH.

4. Uzoma, A. O., & Nwachukwu, E. O. (2015). A hybrid prediction system for American NFL
results. International Journal of Computer Applications Technology and Research, 4(01),
42-47.

5. Pelechrinis, K. (2017). iwinrnfl: A simple, interpretable & well-calibrated in-game win
probability model for NFL. arXiv preprint arXiv:1704.00197.

