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Introduction 

The NFL (National Football League) is the predominant professional league for the sport of 

American football (known in the U.S.A. as simply football). Much time and discussion is devoted 

to analyzing and predicting the winners of NFL games, and it is of particular interest to predict 

which team will win a given game having watched the first half. Other than the score of the 

game, and the prior assessment of the difference in quality between the two teams (taken from 

the Vegas line), how much value can be found by including statistics taken from the first half of 

the game? Is the first half of action largely just statistical noise, or does it contain a signal of how 

the two teams are performing on this particular day? 

In this project, various statistical learning methods were used to predict the winner of each 

game in the period 2012 to 2023 using features based on statistics from the first half of the 

games, as well as the pre-game Vegas odds (for both the handicap line and the total points). 

There were two main objectives: firstly, to compare different modeling techniques and see 

which performed best at this task. And secondly, to see which features were the strongest 

predictors. 

All the statistical learning techniques in this project were performed using Python. Python is the 

most popular language for data science, and boasts a large number of freely available packages 

and libraries for data science and many other tasks. Python was also used in the initial collection 

and cleaning of the NFL data. Game data was scraped from the website Pro Football Reference 

using the beautifulsoup and sqlite3 libraries, and half time statistics were aggregated from 

play-by-play data.  

 

Literature Review 

May et al. (2010) examined statistics from NFL games to compare the importance of rushing and 

passing statistics, and concluded that passing efficiency is a better indicator of team strength 

than rushing efficiency. 1 Warner (2010) used a Gaussian process to predict the margin of 

victory in NFL games but found that their resulting predictions were not as accurate as the 

Vegas line, and were not sufficiently accurate to place profitable bets. 2 

Blaikie et al. (2011) created artificial neural network models to predict the outcomes of football 

games, claiming that their NFL model performed well compared to various expert predictions, 

while their college football version did not perform so well. 3 Ozuma & Nwachukwu (2015) used 

linear regression and K-nearest neighbors to create a hybrid model predicting the results of NFL 

games using various features, claiming a significantly high level of accuracy from their 

predictions. 4 

Finally, Pelechrinis (2018) presents a simple yet robust and well-calibrated model using logistic 

regression to predict the winning probability for the home team during NFL matches. 5 
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Pelechrinis also finds that more complex, nonlinear models fail to improve on the performance 

of a simple linear model.  

 

Methods 

The initial dataset, nfl_ht_data.csv contained 3,260 observations (each representing an NFL 

game) and 40 variables. Some of these variables, such as nominal variables, were not relevant 

to the task and were removed. Categorical values with two levels were converted to a binary 1 

or 0 value, and similarly, a home_win variable was created with a value of 1 or 0 based on 

whether home_final_score was greater than away_final_score. Tied games are fairly 

uncommon in the NFL, and for the purposes of this project the 12 games that ended as a tie 

were removed. 

The only missing values in the data were some blank values in the columns relating to first 

downs. Upon investigation, it was found that these had occurred where a team had no first 

downs before half time. Therefore, these blank values were imputed with a value of zero. After 

this pre-processing, the dataset had 3,248 observations and 28 variables. These variables were 

comprised of the response variable, home_win, plus the 27 features described in Table 1. 

Table 1. List and description of the 27 features in final dataset. 

Variable Description 

vegas_total The Las Vegas betting line for total points in the game. 

ht_home_lead The number of points the home team is leading by (negative 
if the home team is trailing). 

home_vegas_line The Las Vegas handicap line with respect to the home team 
(for example if the home team is a 5.5 point favorite, this 
would be -5.5). 

away_offensive_plays Number of offensive plays run by the away team. 

home_offensive_plays Number of offensive plays run by the home team. 

away_yards_per_play Mean yards gained by away team on offensive plays. 

away_yards_per_pass_play Mean yards gained by away team on passing plays. 

away_yards_per_rush_play Mean yards gained by away team on rushing plays. 

home_yards_per_play Mean yards gained by home team on offensive plays. 

home_yards_per_pass_play Mean yards gained by home team on passing plays. 

home_yards_per_rush_play Mean yards gained by home team on rushing plays. 

away_first_downs Number of first downs gained by away team. 

home_first_downs Number of first downs gained by away team. 

away_first_downs_per_play Number of first downs gained by away team divided by 
number of offensive plays. 

home_first_downs_per_play Number of first downs gained by home team divided by 
number of offensive plays. 
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away_first_downs_1_2 Number of first downs gained by away team on first or 
second down. 

home_first_downs_1_2 Number of first downs gained by home team on first or 
second down. 

away_turnovers Number of turnovers by away team. 

home_turnovers Number of turnovers by home team. 

away_sacked Number of times away team quarterback sacked. 

home_sacked Number of times home team quarterback sacked. 

away_penalties Number of penalties committed by away team. 

home_penalties Number of penalties committed by home team. 

home_second_half_choice Does the home team have the choice to receive the kickoff in 
the second half? 

is_playoff Is this a playoff game? 

neutral_venue Is this a neutral venue (i.e. not the 'home' team's usual home 
stadium)? 

net_home_plays_leading Number of plays where home team is leading minus number 
of plays where away team is leading. 

 

The data were then randomly split into an 80% training set and a 20% testing set. Although this 

data could be arranged chronologically, a random split was chosen rather than using the most 

recent seasons for testing. The main reason for this is because the 2020 season was affected by 

the COVID-19 outbreak, and it was undesirable to have all these matches go into either the 

training set or test set. 

Some descriptive analysis was then performed on the data. A correlation matrix was created to 

identify any strong positive or negative correlations between variables, which might be 

considered redundant and removed. Next, histograms and box plots were created to inspect the 

distribution of each variable. Those with an apparent Gaussian distribution were transformed 

using the StandardScaler function, while those with a more skewed distribution underwent a 

log transformation, first adding 1 to ensure zero values could be handled without raising an 

error. 

The seven statistical learning methods applied to the dataset were: logistic regression (using 

both backward stepwise selection and the Lasso method), linear discriminant analysis, random 

forest, boosting, neural network, and principal component regression. Here is a brief 

explanation of each method: 

Logistic Regression (backward stepwise selection) 

This model was built using the LogisticRegression function from Python’s scikit-learn 

library. The SFS function was used along with 5-fold cross validation to determine the optimal 

number of features. The final model was then fit on the full training set using the selected 
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features. Additionally, interaction terms were added between the features showing strongest 

statistical significance, to see if this would further improve the model. 

Logistic Regression (Lasso) 

The lasso method uses a penalty parameter C to penalize the size of the regression coefficients. 

As a result, many of the coefficients can shrink to zero (unlike in ridge regression, where they 

can become small but cannot reach zero). This can help to combat overfitting, and aid the 

model in generalizing outside of the training set. In order to estimate the optimal value of C, 

cross validation was used to try 10 different values of C, and the value returning the lowest log 

loss was chosen. 

Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) works by finding the linear combinations of features that best 

separate two or more classes or events. LDA assumes that different classes generate data based 

on Gaussian distributions with shared covariance matrices among the classes, and seeks to 

maximize the ratio of between-class variance to within-class variance in any particular dataset, 

thereby ensuring maximum class separability. The LinearDiscriminantAnalysis function 

from the scikit-learn library was utilized to perform LDA. The coefficients obtained from the 

model provide insights into the relative predictive importance of each feature. 

Random Forest 

In random forests, many decision trees are created using synthetic datasets created from the 

original training data using bootstrap aggregation (‘bagging’). The crucial element of random 

forests is the parameter m which denotes the number of features randomly chosen to be 

considered for each split. This avoids the same features being used on every tree and de-

correlates the trees, helping to prevent overfitting. 

The RandomForestClassifier function was used for this task. To find the optimal value for m, 

5-fold cross validation was used to try all values from 2 upward. The final model was then 

trained using this value of m, and the feature_importances_ attribute was used to see which 

features had contributed most, based on each feature’s contribution to the decrease in overall 

node impurity, as measured by the Gini index. 

Boosting 

Boosting is another tree-based method. However, unlike random forests, with boosting the 

trees are grown sequentially, with each tree fit using the residuals from the current model. 

Compared to random forests, boosting models are slightly more vulnerable to overfitting, and 

so three parameters were tuned using cross-validation: the number of trees, the learning rate, 

and the number of splits in each tree. Again, feature_importances_ was used to output the 

most important features. 

Neural Network 
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The neural network was fit using the PyTorch library. While neural networks can be powerful in 

their ability to uncover complex nonlinear relationships in the data, one of the challenges in 

creating them is the number and range of hyperparameters that need to be tuned. For this 

model, five parameters were tuned using 5-fold cross validation: the learning rate, the number 

of epochs, the size of the hidden layer, the batch size, and the dropout rate for regularization – 

important to help avoid overfitting. Unlike most of the other techniques, with neural networks 

there is no simple way to output feature importance, and in this sense it can be described as a 

‘black box’ with strong predictive power that is not easily explained. 

Principal Component Regression 

With the possibility that many of the features in this dataset are redundant or irrelevant, a 

variable reduction method might improve the performance of the logistic regression. The PCA 

function from scikit-learn was used to apply principal component analysis to reduce the full set 

of features to a smaller number. 5-fold cross validation was used to try each number of 

variables, and the optimal value was then used to train a final logistic regression model using 

the resulting principal components. 

After each model had been tuned and trained using the training data, it was used to make 

predictions on the untouched testing set. The scoring method chosen to compare models was 

the log likelihood. While it is common to use other measures such as accuracy or AUC (Area 

Under the Receiver Operating Curve), these measures rely on a 1 or 0 prediction for each game 

using some probability threshold (e.g. 0.5). However, in the context of football predictions, it is 

of limited interest to predict which team is more likely to win – often this is trivially obvious. 

Instead, it might be important (for example, for betting purposes) to predict whether a favored 

team has, say, a 75% or an 85% chance of winning the game. 

Log likelihood is a measure of how well a statistical model explains the observed data, by 

comparing the probability of each prediction with the actual results. Higher log likelihood values 

(or, lower negative log likelihood values) indicate a model that better captures the underlying 

pattern of the data. It is calculated using the following formula: 

 

Results 

The correlation matrix (Figure 1) showed very strong correlations between some variables. For 

example, away_yards_per_play correlated strongly with away_yards_per_pass_play, and 

away_first_downs correlated strongly with both away_first_downs_per_play and 

away_first_downs_1_2. Since this seemed like a redundancy of the same underlying 



7 
 

information, it was decided to remove four features: away_yards_per_play, 

home_yards_per_play, away_first_downs, and home_first_downs.  

 

 

Figure 1. Correlation matrix for all features in the dataset. 

 

Features were transformed and scaled based on their distribution, as described in the Methods 

section. An example of an approximately Gaussian distribution is ht_home_lead (Figure 2) while 

away_turnovers (Figure 3) is more skewed. 
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Figure 2. Histogram showing the distribution of the ht_home_lead variable. 

 

Figure 3. Histogram showing the distribution of the away_turnovers variable. 

 

The logistic regression with backward stepwise selection method found that 5 variables were 

optimal for the model. These variables and their coefficients are shown in Table 2. Because the 

features were scaled, it is possible to compare the size of effects by the absolute value of each 

coefficient. 

Table 2. Variables used in logistic regression with backward stepwise selection. 

Variable Coefficient 

ht_home_lead 1.661 

home_vegas_line -0.754 

net_home_plays_leading -0.615 

is_playoff 0.303 

vegas_total -0.130 
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The largest coefficient is for ht_home_lead, with a larger lead for the home team at half time 

implying an increase in the log odds of the team winning the game. There are negative 

coefficients for home_vegas_line, net_home_plays_leading, and vegas_total, meaning an 

increase in these variables would imply a decrease in the log odds of the team winning the 

game. Finally, the binary variable is_playoff increases the log odds by 0.303 when 

is_playoff = 1 (i.e. when it is a playoff game). Interactions were all found to be insignificant 

and did not improve the model. 

For the lasso regression, using cross validation the optimal value for the cost parameter C was 

found to be 0.046. Note that in the Python function, C is the inverse of λ in the general lasso 

formula, and so the cost parameter was actually 
1

0.046
 or 21.7.  

After training the lasso regression, 13 of the feature coefficients shrank to zero. The coefficients 

of the remaining 10 variables can be seen in Table 3. Similarly to the backward stepwise 

selection method, ht_home_lead and home_vegas_line were the two most important 

predictors. 

 

Figure 4. Plot of the log loss score of each value of C tried during cross validation for the Lasso regression. 

 

Table 3. Variables with a nonzero coefficient in the Lasso logistic regression. 

Variable Coefficient 

ht_home_lead 1.499 

home_vegas_line -0.678 



10 
 

is_playoff 0.172 

home_second_half_choice 0.128 

vegas_total -0.081 

home_yards_per_pass_play 0.034 

home_yards_per_rush_play 0.030 

home_penalties 0.030 

home_first_downs_per_play 0.022 

away_first_downs_per_play -0.004 

 

Applying the two final logistic regression models to the testing set, the log likelihood for the 

backward stepwise model was -305.36, and for the lasso it was -304.74, so the lasso performed 

slightly better on the holdout data. 

 

The coefficients for the LDA, sorted by by their absolute value in descending order, can be seen 

in Table 4. Again, ht_home_lead and home_vegas_line are the two most important features. 

The log likelihood on the testing set was -305.09. 
 

Table 4. Coefficients for the Linear Discriminant Analysis model. 

Variable Importance 

ht_home_lead 1.425 

home_vegas_line -0.739 

net_home_plays_leading -0.514 

is_playoff 0.341 

home_first_downs_1_2 -0.151 

home_first_downs_per_play 0.145 

away_first_downs_per_play -0.131 

vegas_total -0.129 

home_turnovers -0.125 

away_turnovers 0.122 

home_yards_per_pass_play 0.118 

away_penalties 0.112 

away_sacked -0.103 

home_sacked -0.103 

home_second_half_choice 0.093 

home_yards_per_rush_play 0.086 

away_yards_per_pass_play 0.056 

home_penalties -0.039 

away_yards_per_rush_play 0.032 

away_offensive_plays -0.028 

home_offensive_plays 0.025 

neutral_venue -0.019 

away_first_downs_1_2 -0.005 
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For the random forest model, the optimal value for m found by cross validation was 9. However, 

as can be seen in Figure 5, the mean log loss was very similar for m = 6, and so it was decided in 

the context of this plot to use m = 6, since m = 9 is a bit more of an outlier relative to its close 

neighbors. 6 is also closer to the 'rule of thumb' for random forests which is to use m = √𝑝 

which in this case would be √23 = 4.8. 

 

Figure 5. Plot of the log loss score of each value of m tried during cross validation for the random forest. 

 

After training the final model with m = 6, it was used to make predictions on the test data and 

the log likelihood was -320.10. The variable importances can be seen in Table 5. Again, 

ht_home_lead and home_vegas_line are the two most important features. 

 
Table 5. Variable importance for the random forest model, measured by decrease in overall node impurity. 

Variable Importance 

ht_home_lead 0.213 

home_vegas_line 0.109 

away_turnovers 0.106 

home_first_downs_per_play 0.056 

away_first_downs_per_play 0.054 

home_yards_per_pass_play 0.052 
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away_yards_per_pass_play 0.047 

away_yards_per_rush_play 0.045 

home_yards_per_rush_play 0.045 

vegas_total 0.038 

away_offensive_plays 0.033 

home_offensive_plays 0.033 

away_first_downs_1_2 0.030 

home_first_downs_1_2 0.029 

home_penalties 0.024 

home_second_half_choice 0.024 

away_penalties 0.015 

home_sacked 0.015 

away_sacked 0.012 

home_turnovers 0.010 

is_playoff 0.007 

neutral_venue 0.004 

net_home_plays_leading 0.001 

 

For the boosting model, cross validation found the optimal parameters to be a learning rate of 

0.1, max_depth 1, and n_estimators 100. The feature importances for the boosting model can 

be seen in Table 6. Once again, ht_home_lead and home_vegas_line are the two most 

important features, but it is notable how much less important the other variables are, relative 

to the random forest model. The log likelihood of the boosting model when applied to the test 

data was -310.47. 

 
Table 6. Variable importance for the boosting model. 

Variable Importance 

ht_home_lead 0.791 

home_vegas_line 0.188 

home_yards_per_pass_play 0.008 

home_yards_per_rush_play 0.003 

vegas_total 0.003 

away_first_downs_per_play 0.003 

is_playoff 0.002 

away_yards_per_rush_play 0.001 

away_first_downs_1_2 0.001 

away_yards_per_pass_play 0.001 

home_first_downs_per_play 0.001 

away_turnovers 0.001 

away_offensive_plays 0.000 

home_offensive_plays 0.000 

home_first_downs_1_2 0.000 

home_turnovers 0.000 
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away_sacked 0.000 

home_sacked 0.000 

away_penalties 0.000 

home_penalties 0.000 

home_second_half_choice 0.000 

neutral_venue 0.000 

net_home_plays_leading 0.000 

 

 

The optimal hyperparameters found for the neural network are shown in Table 7. When applied 

to the test set, the log likelihood for the neural network model was -308.54. 

 
Table 7. Optimal hyperparameters for the neural network model, found by cross validation. 

Parameter Optimal Value 

learning rate 0.001 

epochs 10 

batch size 32 

hidden layer size 150 

dropout rate 0.1 

 

 

For the principal component regression, cross validation found the optimal number of 

components to be 21 (see Figure 6). The log likelihood on the test set was -307.06. 

 

Figure 6. Plot of the log loss score of each number of principal components by cross validation. 
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A comparison of the log likelihood for each model on the test set can be seen in Table 8. The 

Lasso regression performed best with a log likelihood of -304.74, followed by the other linear 

methods. Random forest was the poorest performer, with a log likelihood of -320.10. 

 
Table 8. Comparison of the performance of the 7 different models. 

Model Log Likelihood 

Logistic Regression (Lasso) -304.74 

Linear Discriminant Analysis -305.09 

Logistic Regression (Stepwise) -305.36 

Principal Component Regression -307.06 

Neural Network -308.54 

Boosting -310.47 

Random Forest -320.10 

 

 

Discussion 

It is interesting to see that the best performing models for this task were the more simple linear 

models such as logistic regression and LDA, whereas the techniques that allow for more 

complex interactions between variables performed less well. Why might this be the case? When 

there are a large number of variables with limited predictive power, or variables that are related 

to one another, overfitting can be a common problem. To overcome this limitation in a future 

repeat of this project, it may be possible to use feature engineering to create a smaller number 

of features that capture the same underlying information from the 23 features used in this 

project. 

The most important variables were found by all models to be ht_home_lead and 

home_vegas_line. It comes as little surprise to learn that the two most important factors are 

the score and the relative quality of the two teams. In the best-performing models (logistic 

regression and LDA), the next most important features were net_home_plays_leading and 

is_playoff. The models found that net_home_plays_leading is negatively related to the log 

odds of home_win, while is_playoff is positively related. 

It should be pointed out that these relationships exist in the context of all other variables being 

held equal. So, when the score and the quality of the teams is held equal, the more time a team 

has been leading, the less chance they have of winning. Some possible reasons for this are that 

it is mentally tiring to play with the lead for long periods, or that the opposing team may have 

momentum if they trailed for a long stretch and have recently taken the lead. The is_playoff 

result implies an extra second half advantage for home teams in the playoff, over and above the 

home advantage inbuilt in the pre-match Vegas line. This could possibly be due to the especially 

raucous home atmosphere in playoff games, and may be worthy of further investigation. 
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Overall, this project reminds us that despite the number of sophisticated nonlinear models 

available today, sometimes a simple linear approach still gives the best results when 

generalizing outside of the training data. 
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