
1

Using Python to Scrape Soccer Scores and

Solve for Optimized Team Ratings

John Knight

The University of Texas Rio Grande Valley

MATH-6340 Computing for Math and Data Science

Prof. Mike Lindstrom

December 5, 2023

2

Introduction

In association football (“soccer”), it is often a subject of interest to rank the set of teams in a

given competition. In league competitions, each team typically plays every other team once at

home and once away, meaning that teams can be fairly compared at the conclusion of the

competition with every team having played the same schedule. However, when wishing to

compare teams at some point during the season, the standings do not account for differences in

the relative difficulty of opponents faced, nor for the proportion of home or away games played.

To determine the official final places in a league, teams are ranked based on points accumulated.

Typically in modern soccer this is calculated as three points for each win, and one point for each

draw. Alternative metrics can be used if one wishes to determine the quality of each team,

perhaps for the purposes of predicting upcoming matches. A common approach is to rank teams

by their goal difference (GD; goals scored minus goals conceded).

Additionally, in recent years a new football metric called “expected goals” (xG) has gained in

popularity. xG calculates a value for every shot based on the distance from goal, angle, position

of defenders, and other factors, regardless of whether the shot results in a goal. 1 Some consider

xG to be a better reflection of a football team’s ability than actual goals scored and conceded,

since it removes a layer of noise related to shots being converted into goals. 2 It is less popular

with traditionalists, who have described xG as “the most useless stat in the history of football”. 3

My aim is to build an application that can scrape the latest set of match results for a designated

league from an online source, and use linear algebra to solve for optimized team ratings using

either goals or expected goals, as dictated by the user. The program will also be able to compare

the predictive performance of goals and xG by calculating ratings for every game in past seasons

using an iterative process and assessing the mean absolute difference between predicted scores

and actual scores.

Methods

Python 3 was chosen for this application for a couple of reasons. Firstly, because Python is the

most widely used language for data science 4, increasing the likely usefulness of the program’s

functions for incorporation in future data science projects. Secondly, because Python’s libraries

are ideal for the tasks required. Below is a list of the libraries utilized (I will go into more detail

on BeautifulSoup and Linprog further down):

• Requests – for interacting with web pages.

• BeautifulSoup – for scraping and parsing html.

• Pandas – data frames to store and manipulate the data.

• Numpy – matrices for linear algebra.

• Linprog (from scipy.optimize) – for linear programming.

• Matplotlib – for outputting graphs & charts.

3

The program begins with the create_season function which asks the user to choose from one of

the ‘big five’ leagues of Europe: Premier League (England), La Liga (Spain), Bundesliga

(Germany), Serie A (Italy), or Ligue 1 (France). It then asks the user to choose any season from

2017-2018 onwards, or press enter to use the current season. This choice of league and season is

then returned and used to create an instance of the Season class, via which the core of the

program is run.

Upon instantiation, the Season class populates its own data frame variable self.__df by

running the scrape_scores function. Using the given league id and season, this passes a url into

the requests.get function to access the popular soccer statistics website Football Reference. 5

This returns HTML content that can be parsed using the BeautifulSoup library.

Figure 1. Inspecting the underlying HTML code for the Football Reference website.

BeautifulSoup works by converting the HTML into a ‘tree’ in which one can search for and

extract data. Elements can be searched for based on characteristics such as their type, id, or class.

In this case, the element required is a table, whose attributes can be found by right-clicking on

the table in the web browser and selecting Inspect (Figure 1). The format of the Scores &

Fixtures page on Football Reference is such that the desired table is always the first table found

on the page. Since we only require the first table, this can be returned using the simple command

soup.find(‘table’) and then pandas is able to convert the table into a data frame using the

read_html function (Figure 2).

Figure 2. This code transforms a web table into a pandas data frame.

Once the Season data frame has been populated, the user is given two choices: Get Current

Ratings, or Perform Analysis. If Get Current Ratings is chosen, the user is asked to choose from

either Goals or Expected Goals, and the solve function calculates ratings for each team in the

specified league, along with a home advantage coefficient, using the chosen metric. The

fundamental idea is that each game can then be predicted using the two teams’ ratings plus home

advantage, as follows:

4

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 = 𝑟𝑎𝑡𝑖𝑛𝑔ℎ − 𝑟𝑎𝑡𝑖𝑛𝑔𝑎 + ℎ𝑜𝑚𝑒𝑎𝑑𝑣

The optimal solution is calculated using the linprog library from scipy.optimize. There are

several steps required to prepare the data for the optimization algorithm. An initial matrix of

zeros is created with 𝑚 rows corresponding to each match in the dataset, and 𝑛 + 1 columns

corresponding to each unique team, plus home advantage. Then, using a dict that maps each

team to its column index, the columns in each row corresponding to the home and away team

playing in that game are set to 1 and -1 respectively. This means the home team’s rating will be

multiplied by 1, the away team’s rating will be multiplied by -1, and teams not playing in the

game will count as zero. Home advantage is set to 1 in all rows, as it applies to every game. Note

that a uniform home advantage factor is applied across all games; while it would be possible to

investigate whether differing levels of home advantage are appropriate for each team, the scope

of this project is to create a single ranking of teams rather than separate rankings for home and

away games.

To find the optimum solution, the solver aims to minimize the mean absolute difference between

the forecast score and the actual scores. Since this is a linear optimization problem, and absolute

values are nonlinear, the code in Figure 3 adds two identity matrices, using the np.eye function,

to represent the positive and negative sides of the absolute values.

Figure 3. Identity matrices are added to represent auxiliary variables.

The goal of the solver is to minimize the sum of the objective function 𝑐𝑇𝑥, where 𝑥 is the vector

of ratings being optimized, and 𝑐 is a vector of constants with 𝑛 + 1 zeros and 2𝑚 ones, meaning

only the auxiliary variables are being optimized. This is subject to the constraint 𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞

where 𝐴𝑒𝑞 is the extended coefficients matrix described above, and 𝑏𝑒𝑞 is the vector of actual

match results (for example if the home team scores 2 goals and the away team scores 3 goals, the

target score is -1). An additional constraint was included to set the mean of the team ratings to

zero. Although the ratings only exist relative to one another within a closed system, and therefore

would work the same with any mean, setting the mean to zero allows for more intuitive reading

of ratings and comparison between different leagues and seasons.

Finally, the linear program is solved using the bounds seen in Figure 4. Team ratings are bound

between -5 and 5, which should realistically encompass any team competing in a major soccer

league. Auxiliary variables are bound to be nonnegative, according to their role. The ‘highs’

method proved to be most successful, as it converged in every trial, whereas the ‘interior-point’

and ‘revised simplex’ methods sometimes did not converge.

5

Figure 4. Bounds for linear optimization program.

Once the linear program has been solved, ratings are output to the console. When the user has

selected the Get Current Ratings option, this is the end of the program. However, when running

the Perform Analysis option, the solve function is called many times in a loop by calling the

get_all_ratings function. This loop solves for the ratings prior to every game in the dataset,

meaning only games played prior to the date of each game are included in the optimization

problem (an extra parameter end_date is required for this purpose). This is done for both G and

xG to allow for comparison between the two metrics.

When all games in the dataset have been forecast, the function __calc_abs_diffs calculates the

absolute difference between the forecast score in each game and the actual score. Note that goals

are always used as the target variable, regardless of whether G or xG were used for the

prediction. This is because goals are the ‘currency’ of interest that football analysts would like to

predict, and it allows for comparison between the predictive value of the two metrics (if both

variables are simply predicting themselves, any comparison would be meaningless).

Finally, the mean absolute differences using both G and xG are output to the console, and a chart

is displayed using the matplotlib library. The chart shows the 5 game rolling mean absolute

difference between the forecast scores and the actual scores, with one line for G and another for

xG. This chart allows for comparison between the two metrics as a time series to see how their

predictive power changes as the season progresses and sample size increases.

Results

The Get Current Ratings method proved very successful, instantly calculating ratings based on

the latest data. Figure 5 shows an example of ratings for the English Premier League as of

December 4, 2023, using xG as the independent variable. Newcastle Utd are rated as the best

team on +1.34, and Sheffield United are rated as the worst team on -1.59. Home advantage was

calculated to be worth 0.27 goals per game.

6

Figure 5. Output of ratings for the Premier League on December 4, 2023. Note that the output of December 3 reflects the last

game played, not the current date.

The Perform Analysis process was run for each of the 30 eligible seasons (6 seasons, from 2017-

2018 onwards, for the 5 different leagues). Table 1 shows a summary of the mean absolute

difference, and the frequency at which each metric proved to be the better predictor. It turns out

that xG was superior in 29 of the 30 trials, with an overall mean absolute difference 0.12 lower

than goals. An expanded version can be found in Table 2 in the appendix.

Table 1. Comparison of the predictive performance goals and expected goals over 30 seasons.

Metric Better Predictor Mean Absolute Difference

Goals 1 1.60

Expected Goals 29 1.48

Figure 6 shows an example of the plot output during the Perform Analysis process. It plots the 5

game rolling mean absolute difference, in this case for France’s Ligue 1 in 2021-2022. While the

graph does convey the information intended, the natural variance of week-to-week results creates

a lot of noise which renders the graphs difficult to draw inference from.

7

Figure 6. Example of the graphical output in the program’s Perform Analysis process.

Discussion

Since this program provides a method to quickly calculate team ratings over a large number of

games, it could provide a framework to form ratings that could be incorporated as a feature for

learning algorithms, such as artificial neural networks. The results of this study would suggest

that expected goals are a more useful metric than goals for predicting future match outcomes.

There is much potential for development to build on the framework of this program. For

example, there are other metrics available on Football Reference, such as the number of touches

in the penalty area, that could easily be used in this program in place of G/xG, and tested to

judge their efficacy. Also, it would be simple to apply the same principles to any other sport

involving a closed system of teams contesting matches with scores, such as American football,

basketball, or baseball.

The graph output could be developed to provide more meaningful information. It may be the

case that the amount of variance in the results of a single league is too high to judge the relative

performance of a metric as a time series throughout the weeks of the season. Perhaps by

combining many seasons and graphing them together, the increased sample size would reduce

variance and provide a more interesting visualization.

8

Appendix

References

1 Whitmore, J. (2023, November 10). What is expected goals (XG)?. Opta Analyst.

https://theanalyst.com/na/2023/08/what-is-expected-goals-xg/

2 Octosport.io. (2022, April 15). Expected goals: Can they predict future goals?. Geek Culture.

https://medium.com/geekculture/expected-goals-can-they-predict-future-goals-

24a1b1d0279d

3 MacInnes, P. (2017, November 22). Never mind Jeff Stelling’s derision, expected goals – XG –

is here to stay. The Guardian.

https://www.theguardian.com/football/blog/2017/nov/22/jeff-stelling-expected-goals-stats-

xg-soccer-am

4 Canales Luna, J. (2023, March 10). Top programming languages for data scientists in 2023.

datacamp.com. https://www.datacamp.com/blog/top-programming-languages-for-data-

scientists-in-2022

5 Pro Football Reference. Sports Reference. https://www.pro-football-reference.com/

Tables

Table 2. Expanded version of Table 1, showing a comparison of the predictive performance goals and expected goals over 30

seasons.

League Season G xG Superior

England 2017-2018 1.757 1.541 xG

England 2018-2019 1.604 1.481 xG

England 2019-2020 1.716 1.464 xG

England 2020-2021 1.661 1.482 xG

England 2021-2022 1.649 1.56 xG

England 2022-2023 1.607 1.564 xG

Spain 2017-2018 1.63 1.532 xG

Spain 2018-2019 1.409 1.306 xG

Spain 2019-2020 1.441 1.31 xG

Spain 2020-2021 1.392 1.283 xG

Spain 2021-2022 1.392 1.429 G

Spain 2022-2023 1.463 1.341 xG

Germany 2017-2018 1.577 1.497 xG

Germany 2018-2019 1.829 1.816 xG

Germany 2019-2020 1.959 1.809 xG

Germany 2020-2021 1.672 1.539 xG

Germany 2021-2022 1.917 1.73 xG

9

Germany 2022-2023 1.911 1.777 xG

Italy 2017-2018 1.512 1.405 xG

Italy 2018-2019 1.437 1.304 xG

Italy 2019-2020 1.658 1.485 xG

Italy 2020-2021 1.563 1.348 xG

Italy 2021-2022 1.534 1.394 xG

Italy 2022-2023 1.506 1.483 xG

France 2017-2018 1.625 1.519 xG

France 2018-2019 1.485 1.392 xG

France 2019-2020 1.569 1.488 xG

France 2020-2021 1.623 1.473 xG

France 2021-2022 1.516 1.393 xG

France 2022-2023 1.429 1.398 xG

Code

https://github.com/capybara2/Soccer-Solver

